
Understanding Visual Basic syntax

The syntax in a Visual Basic Help topic for a method, function, or statement shows all the

elements necessary to use the method, function, or statement correctly. The examples in

this topic explain how to interpret the most common syntax elements.

Activate method syntax

object.Activate

In the Activate method syntax, the italic word "object" is a placeholder for information

you supply—in this case, code that returns an object. Words that are bold should be

typed exactly as they appear. For example, the following procedure activates the second

window in the active document.

VBCopy

Sub MakeActive()

 Windows(2).Activate

End Sub

MsgBox function syntax

MsgBox (prompt, [buttons,] [title,] [helpfile, context])

In the MsgBox function syntax, the italic words are named arguments of the

function. Arguments enclosed in brackets are optional. (Do not type the brackets in your

Visual Basic code.) For the MsgBox function, the only argument you must provide is the

text for the prompt.

Arguments for functions and methods can be specified in code either by position or by

name. To specify arguments by position, follow the order presented in the syntax,

separating each argument with a comma, for example:

VBCopy

MsgBox "Your answer is correct!",0,"Answer Box"

To specify an argument by name, use the argument name followed by a colon and an

equal sign (:=), and the argument's value. You can specify named arguments in any

order, for example:

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#method
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#function-procedure
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#object
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#procedure
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/msgbox-function
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#named-argument
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#argument

VBCopy

MsgBox Title:="Answer Box", Prompt:="Your answer is correct!"

The syntax for functions and some methods shows the arguments enclosed in

parentheses. These functions and methods return values, so you must enclose the

arguments in parentheses to assign the value to a variable. If you ignore the return value

or if you don't pass arguments at all, don't include the parentheses. Methods that don't

return values do not need their arguments enclosed in parentheses. These guidelines

apply whether you are using positional arguments or named arguments.

In the following example, the return value from the MsgBox function is a number

indicating the selected button that is stored in the variable myVar. Because the return

value is used, parentheses are required. Another message box then displays the value of

the variable.

VBCopy

Sub Question()

 myVar = MsgBox(Prompt:="I enjoy my job.", _

 Title:="Answer Box", Buttons:="4")

 MsgBox myVar

End Sub

Option Compare statement syntax

Option Compare { Binary | Text | Database }

In the Option Compare statement syntax, the braces and vertical bar indicate a

mandatory choice between three items. (Do not type the braces in the Visual Basic

statement). For example, the following statement specifies that within the module,

strings will be compared in a sort order that is not case-sensitive.

VBCopy

Option Compare Text

Dim statement syntax

Dim varname [([subscripts])] [As type,] [varname [([subscripts])] [As type]] . . .

In the Dim statement syntax, the word Dim is a required keyword. The only required

element is varname (the variable name).

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/option-compare-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#module
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#sort-order
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/dim-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#keyword

For example, the following statement creates three variables: myVar, nextVar,

and thirdVar. These are automatically declared as Variant variables.

VBCopy

Dim myVar, nextVar, thirdVar

The following example declares a variable as a String. Including a data type saves

memory and can help you find errors in your code.

VBCopy

Dim myAnswer As String

To declare several variables in one statement, include the data type for each variable.

Variables declared without a data type are automatically declared as Variant.

VBCopy

Dim x As Integer, y As Integer, z As Integer

In the following statement, x and y are assigned the Variant data type. Only z is

assigned the Integer data type.

VBCopy

Dim x, y, z As Integer

If you are declaring an array variable, you must include parentheses. The subscripts are

optional. The following statement dimensions a dynamic array, myArray.

VBCopy

Dim myArray()

Using arrays

You can declare an array to work with a set of values of the same data type. An array is a

single variable with many compartments to store values, while a typical variable has only

one storage compartment in which it can store only one value. Refer to the array as a

whole when you want to refer to all the values it holds, or you can refer to its individual

elements.

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#array
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#array
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable

For example, to store daily expenses for each day of the year, you can declare one array

variable with 365 elements, rather than declaring 365 variables. Each element in an array

contains one value. The following statement declares the array variable with 365

elements. By default, an array is indexed beginning with zero, so the upper bound of the

array is 364 rather than 365.

VBCopy

Dim curExpense(364) As Currency

To set the value of an individual element, you specify the element's index. The following

example assigns an initial value of 20 to each element in the array.

VBCopy

Sub FillArray()

 Dim curExpense(364) As Currency

 Dim intI As Integer

 For intI = 0 to 364

 curExpense(intI) = 20

 Next

End Sub

Changing the lower bound

You can use the Option Base statement at the top of a module to change the default

index of the first element from 0 to 1. In the following example, the Option

Basestatement changes the index for the first element, and the Dim statement declares

the array variable with 365 elements.

VBCopy

Option Base 1

Dim curExpense(365) As Currency

You can also explicitly set the lower bound of an array by using a To clause, as shown in

the following example.

VBCopy

Dim curExpense(1 To 365) As Currency

Dim strWeekday(7 To 13) As String

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/option-base-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#module
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/dim-statement

Storing Variant values in arrays

There are two ways to create arrays of Variant values. One way is to declare an array

of Variant data type, as shown in the following example:

VBCopy

Dim varData(3) As Variant

varData(0) = "Claudia Bendel"

varData(1) = "4242 Maple Blvd"

varData(2) = 38

varData(3) = Format("06-09-1952", "General Date")

The other way is to assign the array returned by the Array function to a Variantvariable,

as shown in the following example.

VBCopy

Dim varData As Variant

varData = Array("Ron Bendel", "4242 Maple Blvd", 38, _

Format("06-09-1952", "General Date"))

You identify the elements in an array of Variant values by index, no matter which

technique you use to create the array. For example, the following statement can be

added to either of the preceding examples.

VBCopy

MsgBox "Data for " & varData(0) & " has been recorded."

Using multidimensional arrays

In Visual Basic, you can declare arrays with up to 60 dimensions. For example, the

following statement declares a 2-dimensional, 5-by-10 array.

VBCopy

Dim sngMulti(1 To 5, 1 To 10) As Single

If you think of the array as a matrix, the first argument represents the rows and the

second argument represents the columns.

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/variant-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variant-data-type

Use nested For...Next statements to process multidimensional arrays. The following

procedure fills a two-dimensional array with Single values.

VBCopy

Sub FillArrayMulti()

 Dim intI As Integer, intJ As Integer

 Dim sngMulti(1 To 5, 1 To 10) As Single

 ' Fill array with values.

 For intI = 1 To 5

 For intJ = 1 To 10

 sngMulti(intI, intJ) = intI * intJ

 Debug.Print sngMulti(intI, intJ)

 Next intJ

 Next intI

End Sub

Using constants

Your code might contain frequently occurring constant values, or might depend on

certain numbers that are difficult to remember and have no obvious meaning. You can

make your code easier to read and maintain by using constants. A constant is a

meaningful name that takes the place of a number or string that does not change. You

can't modify a constant or assign a new value to it as you can a variable.

Types of constants

There are three types of constants:

 Intrinsic constants, or system-defined constants, are provided by applications and

controls. Other applications that provide object libraries, such as Microsoft Access,

Excel, Project, and Word also provide a list of constants that you can use with their

objects, methods, and properties. You can get a list of the constants provided for

individual object libraries in the Object Browser.

Visual Basic constants are listed in the Visual Basic for Applications type library and

Data Access Object (DAO) library.

 Note

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/fornext-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#constant
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#intrinsic-constants
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#object-library
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#object-browser

Visual Basic continues to recognize constants in applications created in earlier

versions of Visual Basic or Visual Basic for Applications. You can upgrade your

constants to those listed in the Object Browser. Constants listed in the Object

Browser don't have to be declared in your application.

 Symbolic or user-defined constants are declared by using the Const statement.

 Conditional compiler constants are declared by using the #Const statement

(directive).

In earlier versions of Visual Basic, constant names were usually capitalized with

underscores. For example:

VBCopy

TILE_HORIZONTAL

Intrinsic constants are now qualified to avoid confusion when constants with the same

name exist in more than one object library, which may have different values assigned to

them. There are two ways to qualify constant names:

 By prefix

 By library reference

Qualifying constants by prefix

The intrinsic constants supplied by all objects appear in a mixed-case format, with a 2-

character prefix indicating the object library that defines the constant. Constants from

the Visual Basic for Applications object library are prefaced with "vb" and constants from

the Microsoft Excel object library are prefaced with "xl". The following examples

illustrate how prefixes for custom controls vary, depending on the type library.

 vbTileHorizontal

 xlDialogBorder

Qualifying constants by library reference

You can also qualify the reference to a constant by using the following syntax.

[libname.] [modulename.] constname

The syntax for qualifying constants has these parts:

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/object-browser
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/const-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#conditional-compiler-constant
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/const-directive
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#type-library

Part Description

libname Optional. The name of the type library that defines the constant. For

most custom controls (not available on the Macintosh), this is also

the class name of the control. If you don't remember the class name of

the control, position the mouse pointer over the control in the toolbox.

The class name is displayed in the ToolTip.

modulename Optional. The name of the module within the type library that defines

the constant. You can find the name of the module by using the Object

Browser.

constname The name defined for the constant in the type library.

For example:

VBCopy

Threed.LeftJustify

Using data types efficiently

Unless otherwise specified, undeclared variables are assigned the Variant data type. This

data type makes it easy to write programs, but it is not always the most efficient data

type to use.

You should consider using other data types if:

 Your program is very large and uses many variables.

 Your program must run as quickly as possible.

 You write data directly to random-access files.

In addition to Variant, supported data types

include Byte, Boolean, Integer, Long, Single, Double, Currency, Decimal, Date, Objec

t, and String.

Use the Dim statement to declare a variable of a specific type, for example:

VBCopy

Dim X As Integer

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#class
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variant-data-type
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/data-type-summary
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/dim-statement

This statement declares that a variable X is an integer — a whole number between -

32,768 and 32,767. If you try to set X to a number outside that range, an error occurs. If

you try to set X to a fraction, the number is rounded. For example:

VBCopy

X = 32768 ' Causes error.

X = 5.9 ' Sets x to 6.

Using Do...Loop statements

You can use Do...Loop statements to run a block of statements an indefinite number of

times. The statements are repeated either while a condition is True or until a condition

becomes True.

Repeating statements while a condition is True

There are two ways to use the While keyword to check a condition in

a Do...Loopstatement. You can check the condition before you enter the loop, or you

can check it after the loop has run at least once.

In the following ChkFirstWhile procedure, you check the condition before you enter the

loop. If myNum is set to 9 instead of 20, the statements inside the loop will never run. In

the ChkLastWhile procedure, the statements inside the loop run only once before the

condition becomes False.

VBCopy

Sub ChkFirstWhile()

 counter = 0

 myNum = 20

 Do While myNum > 10

 myNum = myNum - 1

 counter = counter + 1

 Loop

 MsgBox "The loop made " & counter & " repetitions."

End Sub

Sub ChkLastWhile()

 counter = 0

 myNum = 9

 Do

 myNum = myNum - 1

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/doloop-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#keyword

 counter = counter + 1

 Loop While myNum > 10

 MsgBox "The loop made " & counter & " repetitions."

End Sub

Repeating statements until a condition becomes True

There are two ways to use the Until keyword to check a condition in

a Do...Loopstatement. You can check the condition before you enter the loop (as shown

in the ChkFirstUntil procedure), or you can check it after the loop has run at least once

(as shown in the ChkLastUntil procedure). Looping continues while the condition

remains False.

VBCopy

Sub ChkFirstUntil()

 counter = 0

 myNum = 20

 Do Until myNum = 10

 myNum = myNum - 1

 counter = counter + 1

 Loop

 MsgBox "The loop made " & counter & " repetitions."

End Sub

Sub ChkLastUntil()

 counter = 0

 myNum = 1

 Do

 myNum = myNum + 1

 counter = counter + 1

 Loop Until myNum = 10

 MsgBox "The loop made " & counter & " repetitions."

End Sub

Exiting a Do...Loop statement from inside the loop

You can exit a Do...Loop by using the Exit Do statement. For example, to exit an

endless loop, use the Exit Do statement in the True statement block of either

an If...Then...Else statement or a Select Case statement. If the condition is False, the

loop will run as usual.

In the following example myNum is assigned a value that creates an endless loop.

The If...Then...Else statement checks for this condition, and then exits, preventing

endless looping.

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/exit-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ifthenelse-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/select-case-statement

VBCopy

Sub ExitExample()

 counter = 0

 myNum = 9

 Do Until myNum = 10

 myNum = myNum - 1

 counter = counter + 1

 If myNum < 10 Then Exit Do

 Loop

 MsgBox "The loop made " & counter & " repetitions."

End Sub

 Note

To stop an endless loop, press ESC or CTRL+BREAK.

Using For Each...Next statements

For Each...Next statements repeat a block of statements for each object in

a collectionor each element in an array. Visual Basic automatically sets a variable each

time the loop runs. For example, the following procedure closes all forms except the

form containing the procedure that's running.

VBCopy

Sub CloseForms()

 For Each frm In Application.Forms

 If frm.Caption <> Screen. ActiveForm.Caption Then frm.Close

 Next

End Sub

The following code loops through each element in an array and sets the value of each to

the value of the index variable I.

VBCopy

Dim TestArray(10) As Integer, I As Variant

For Each I In TestArray

 TestArray(I) = I

Next I

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/for-eachnext-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#object
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#collection
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#array
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#procedure

Looping through a range of cells

Use a For Each...Next loop to loop through the cells in a range. The following

procedure loops through the range A1:D10 on Sheet1 and sets any number whose

absolute value is less than 0.01 to 0 (zero).

VBCopy

Sub RoundToZero()

 For Each myObject in myCollection

 If Abs(myObject.Value) < 0.01 Then myObject.Value = 0

 Next

End Sub

Exiting a For Each...Next loop before it is finished

You can exit a For Each...Next loop by using the Exit For statement. For example, when

an error occurs, use the Exit For statement in the True statement block of either

an If...Then...Else statement or a Select Case statement that specifically checks for the

error. If the error does not occur, the If…Then…Else statement is False and the loop

continues to run as expected.

The following example tests for the first cell in the range A1:B5 that does not contain a

number. If such a cell is found, a message is displayed and Exit For exits the loop.

VBCopy

Sub TestForNumbers()

 For Each myObject In MyCollection

 If IsNumeric(myObject.Value) = False Then

 MsgBox "Object contains a non-numeric value."

 Exit For

 End If

 Next c

End Sub

Using a For Each...Next loop to iterate over a VBA class

For Each...Next loops don't only iterate over arrays and instances of

the Collectionobject. For Each...Next loops can also iterate over a VBA class that you

have written.

Following is an example demonstrating how you can do this.

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/exit-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ifthenelse-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/select-case-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/collection-object

1. Create a class module in the VBE (Visual Basic Editor), and rename

it CustomCollection.cc1

2. Place the following code in the newly created module.

VBCopy

Private MyCollection As New Collection

' The Initialize event automatically gets triggered

' when instances of this class are created.

' It then triggers the execution of this procedure.

Private Sub Class_Initialize()

 With MyCollection

 .Add "First Item"

 .Add "Second Item"

 .Add "Third Item"

 End With

End Sub

' Property Get procedure for the setting up of

' this class so that it works with 'For Each...'

' constructs.

Property Get NewEnum() As IUnknown

' Attribute NewEnum.VB_UserMemId = -4

Set NewEnum = MyCollection.[_NewEnum]

End Property

3. Export this module to a file and store it locally.cc2

4. After you export the module, open the exported file by using a text editor

(Window's Notepad software should be sufficient). The file contents should look

like the following.

VBCopy

VERSION 1.0 CLASS

BEGIN

MultiUse = -1 'True

END

Attribute VB_Name = "CustomCollection"

Attribute VB_GlobalNameSpace = False

Attribute VB_Creatable = False

Attribute VB_PredeclaredId = False

Attribute VB_Exposed = False

Private MyCollection As New Collection

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#class-module
https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/using-for-eachnext-statements#cc1
https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/using-for-eachnext-statements#cc2

' The Initialize event automatically gets triggered

' when instances of this class are created.

' It then triggers the execution of this procedure.

Private Sub Class_Initialize()

 With MyCollection

 .Add "First Item"

 .Add "Second Item"

 .Add "Third Item"

 End With

End Sub

' Property Get procedure for the setting up of

' this class so that it works with 'For Each...'

' constructs.

Property Get NewEnum() As IUnknown

' Attribute NewEnum.VB_UserMemId = -4

Set NewEnum = MyCollection.[_NewEnum]

End Property

5. Using the text editor, remove the ' character from the first line under the Property

Get NewEnum() As IUnknown text in the file. Save the modified file.

6. Back in the VBE, remove the class that you created from your VBA project and

don't choose to export it when prompted.cc3

7. Import the file that you removed the ' character from back into the VBE.cc4

8. Run the following code to see that you can now iterate over your custom VBA class

that you have written by using both the VBE and a text editor.

VBCopy

Dim Element

Dim MyCustomCollection As New CustomCollection

For Each Element In MyCustomCollection

MsgBox Element

Next

Footnotes Description

[cc1] You can create a class module by choosing Class Module on

the Insert menu. You can rename a class module by modifying its

properties in the Propertieswindow.

[cc2] You can activate the Export File dialog box by choosing Export File on

the File menu.

https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/using-for-eachnext-statements#cc3
https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/using-for-eachnext-statements#cc4
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#class-module
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/insert-menu
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/use-the-properties-window
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/export-file-dialog-box
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/file-menu#import-file-export-file
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/file-menu

Footnotes Description

[cc3] You can remove a class module from the VBE by choosing Remove

Item on the File menu.

[cc4] You can import an external class-module file by activating the Import

Filedialog box (choose Import File on the File menu).

Using For...Next statements

You can use For...Next statements to repeat a block of statements a specific number of

times. For loops use a counter variable whose value is increased or decreased with each

repetition of the loop.

The following procedure makes the computer beep 50 times. The For statement

specifies the counter variable and its start and end values. The Next statement

increments the counter variable by 1.

VBCopy

Sub Beeps()

 For x = 1 To 50

 Beep

 Next x

End Sub

Using the Step keyword, you can increase or decrease the counter variable by the value

you specify. In the following example, the counter variable j is incremented by 2 each

time the loop repeats. When the loop is finished, total is the sum of 2, 4, 6, 8, and 10.

VBCopy

Sub TwosTotal()

 For j = 2 To 10 Step 2

 total = total + j

 Next j

 MsgBox "The total is " & total

End Sub

To decrease the counter variable, use a negative Step value. To decrease the counter

variable, you must specify an end value that is less than the start value. In the following

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/file-menu#remove-item
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/file-menu#remove-item
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/import-file-dialog-box
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/import-file-dialog-box
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/file-menu#import-file-export-file
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/fornext-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#procedure
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#keyword

example, the counter variable myNum is decreased by 2 each time the loop repeats. When

the loop is finished, total is the sum of 16, 14, 12, 10, 8, 6, 4, and 2.

VBCopy

Sub NewTotal()

 For myNum = 16 To 2 Step -2

 total = total + myNum

 Next myNum

 MsgBox "The total is " & total

End Sub

 Note

It's not necessary to include the counter variable name after the Next statement. In the

preceding examples, the counter variable name was included for readability.

You can exit a For...Next statement before the counter reaches its end value by using

the Exit For statement. For example, when an error occurs, use the Exit For statement in

the True statement block of either an If...Then...Else statement or a Select

Casestatement that specifically checks for the error. If the error doesn't occur,

the If…Then…Else statement is False, and the loop will continue to run as expected.

Using If...Then...Else statements

You can use the If...Then...Else statement to run a specific statement or a block of

statements, depending on the value of a condition. If...Then...Else statements can be

nested to as many levels as you need.

However, for readability, you may want to use a Select Case statement rather than

multiple levels of nested If...Then...Else statements.

Running statements if a condition is True

To run only one statement when a condition is True, use the single-line syntax of

the If...Then...Else statement. The following example shows the single-line syntax,

omitting the Else keyword.

VBCopy

Sub FixDate()

 myDate = #2/13/95#

 If myDate < Now Then myDate = Now

End Sub

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/exit-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ifthenelse-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/select-case-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/select-case-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ifthenelse-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/select-case-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#keyword

To run more than one line of code, you must use the multiple-line syntax. This syntax

includes the End If statement, as shown in the following example.

VBCopy

Sub AlertUser(value as Long)

 If value = 0 Then

 AlertLabel.ForeColor = "Red"

 AlertLabel.Font.Bold = True

 AlertLabel.Font.Italic = True

 End If

End Sub

Running certain statements if a condition is True and

running others if it's False

Use an If...Then...Else statement to define two blocks of executable statements: one

block runs if the condition is True, and the other block runs if the condition is False.

VBCopy

Sub AlertUser(value as Long)

 If value = 0 Then

 AlertLabel.ForeColor = vbRed

 AlertLabel.Font.Bold = True

 AlertLabel.Font.Italic = True

 Else

 AlertLabel.Forecolor = vbBlack

 AlertLabel.Font.Bold = False

 AlertLabel.Font.Italic = False

 End If

End Sub

Testing a second condition if the first condition is False

You can add ElseIf statements to an If...Then...Else statement to test a second

condition if the first condition is False. For example, the following function procedure

computes a bonus based on job classification. The statement following

the Elsestatement runs if the conditions in all of the If and ElseIf statements are False.

VBCopy

Function Bonus(performance, salary)

 If performance = 1 Then

 Bonus = salary * 0.1

 ElseIf performance = 2 Then

 Bonus = salary * 0.09

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/end-statement

 ElseIf performance = 3 Then

 Bonus = salary * 0.07

 Else

 Bonus = 0

 End If

End Function

Using parentheses in code

Sub procedures, built-in statements, and some methods don't return a value, so

the arguments aren't enclosed in parentheses. For example:

VBCopy

MySub "stringArgument", integerArgument

Function procedures, built-in functions, and some methods do return a value, but you

can ignore it. If you ignore the return value, don't include parentheses. Call the function

just as you would call a Sub procedure. Omit the parentheses, list any arguments, and

don't assign the function to a variable. For example:

VBCopy

MsgBox "Task Completed!", 0, "Task Box"

To use the return value of a function, enclose the arguments in parentheses, as shown in

the following example.

VBCopy

Answer3 = MsgBox("Are you happy with your salary?", 4, "Question 3")

A statement in a Sub or Function procedure can pass values to a called procedure by

using named arguments. The guidelines for using parentheses apply, whether or not

you use named arguments. When you use named arguments, you can list them in any

order, and you can omit optional arguments. Named arguments are always followed by

a colon and an equal sign (:=), and then the argument value.

The following example calls the MsgBox function by using named arguments, but it

ignores the return value.

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/sub-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#method
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#argument
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/function-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#named-argument

VBCopy

MsgBox Title:="Task Box", Prompt:="Task Completed!"

The following example calls the MsgBox function by using named arguments and

assigns the return value to the variable.

VBCopy

answer3 = MsgBox(Title:="Question 3", _

 Prompt:="Are you happy with your salary?", Buttons:=4)

Using Select Case statements

Use the Select Case statement as an alternative to

using ElseIf in If...Then...Elsestatements when comparing one expression to several

different values. While If...Then...Else statements can evaluate a different expression for

each ElseIfstatement, the Select Case statement evaluates an expression only once, at

the top of the control structure.

In the following example, the Select Case statement evaluates the argument that is

passed to the procedure. Note that each Case statement can contain more than one

value, a range of values, or a combination of values and comparison operators. The

optional Case Else statement runs if the Select Case statement doesn't match a value in

any of the Case statements.

VBCopy

Function Bonus(performance, salary)

 Select Case performance

 Case 1

 Bonus = salary * 0.1

 Case 2, 3

 Bonus = salary * 0.09

 Case 4 To 6

 Bonus = salary * 0.07

 Case Is > 8

 Bonus = 100

 Case Else

 Bonus = 0

 End Select

End Function

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/select-case-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ifthenelse-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#expression
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#comparison-operator

Using the Add-In Manager

Use the Add-In Manager dialog box to load or unload an add-in. If you close only the

visible portions of an add-in—by double-clicking its system menu or by clicking its close

button, for example—its forms disappear from the screen, but the add-in is still present

in memory.

The add-in object itself will always stay resident in memory until the add-in is

disconnected through the Add-In Manager dialog box.

Using With statements

The With statement lets you specify an object or user-defined type once for an entire

series of statements. With statements make your procedures run faster and help you

avoid repetitive typing.

The following example fills a range of cells with the number 30, applies bold formatting,

and sets the interior color of the cells to yellow.

VBCopy

Sub FormatRange()

 With Worksheets("Sheet1").Range("A1:C10")

 .Value = 30

 .Font.Bold = True

 .Interior.Color = RGB(255, 255, 0)

 End With

End Sub

You can nest With statements for greater efficiency. The following example inserts a

formula into cell A1, and then formats the font.

VBCopy

Sub MyInput()

 With Workbooks("Book1").Worksheets("Sheet1").Cells(1, 1)

 .Formula = "=SQRT(50)"

 With .Font

 .Name = "Arial"

 .Bold = True

 .Size = 8

 End With

 End With

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/add-in-manager-dialog-box
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/with-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#object
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#user-defined-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement

End Sub

VarType constants

The following constants can be used anywhere in your code in place of the actual

values.

Constant Value Description

vbEmpty 0 Uninitialized (default)

vbNull 1 Contains no valid data

vbInteger 2 Integer

vbLong 3 Long integer

vbSingle 4 Single-precision floating-point number

vbDouble 5 Double-precision floating-point number

vbCurrency 6 Currency

vbDate 7 Date

vbString 8 String

vbObject 9 Object

vbError 10 Error

vbBoolean 11 Boolean

vbVariant 12 Variant (used only for arrays of variants)

vbDataObject 13 Data access object

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#constant
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#integer-data-type
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/long-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#currency-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#date-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#string-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#boolean-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variant-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#array

Constant Value Description

vbDecimal 14 Decimal

vbByte 17 Byte

vbLongLong 20 LongLong integer (valid on 64-bit platforms only)

vbUserDefinedType 36 Variants that contain user-defined types

vbArray 8192 Array

Visual Basic naming rules

Use the following rules when you name procedures, constants, variables,

and arguments in a Visual Basic module:

 You must use a letter as the first character.

 You can't use a space, period (.), exclamation mark (!), or the

characters @, &, $, #in the name.

 Name can't exceed 255 characters in length.

 Generally, you shouldn't use any names that are the same as the function,

statement, method, and intrinsic constant names used in Visual Basic or by

the host application. Otherwise you end up shadowing the same keywords in the

language. To use an intrinsic language function, statement, or method that

conflicts with an assigned name, you must explicitly identify it. Precede the intrinsic

function, statement, or method name with the name of the associated type library.

For example, if you have a variable called Left, you can only invoke

the Left function by using VBA.Left.

 You can't repeat names within the same level of scope. For example, you can't

declare two variables named age within the same procedure. However, you can

declare a private variable named age and a procedure-level variable

named agewithin the same module.

 Note

Visual Basic isn't case-sensitive, but it preserves the capitalization in the statement

where the name is declared.

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#decimal-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#byte-data-type
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/long-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#procedure
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#constant
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#argument
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#module
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#intrinsic-constants
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#host-application
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#keyword
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#type-library
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#scope
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#procedure-level

Working across applications

Visual Basic can create new objects and retrieve existing objects from many Microsoft

applications. Other applications may also provide objects that you can create by using

Visual Basic. See the application's documentation for more information.

To create a new object or get an existing object from another application, use

the CreateObject function or GetObject function.

VBCopy

' Start Microsoft Excel and create a new Worksheet object.

Set ExcelWorksheet = CreateObject("Excel.Sheet")

' Start Microsoft Excel and open an existing Worksheet object.

Set ExcelWorksheet = GetObject("SHEET1.XLS")

' Start Microsoft Word.

Set WordBasic = CreateObject("Word.Basic")

Most applications provide an Exit or Quit method that closes the application whether or

not it is visible. For more information about the objects, methods, and properties an

application provides, see the application's documentation.

Some applications allow you to use the New keyword to create an object of any class

that exists in its type library. For example:

VBCopy

Dim X As New Field

This case is an example of a class in the data access type library. A new instance of

a Field object is created by using this syntax. Refer to the application's documentation

for information about which object classes can be created in this way.

Writing a Function procedure

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#object
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/createobject-function
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/getobject-function
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#keyword
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#type-library
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#class

A Function procedure is a series of Visual Basic statements enclosed by

the Functionand End Function statements. A Function procedure is similar to

a Sub procedure, but a function can also return a value.

A Function procedure can take arguments, such as constants, variables,

or expressionsthat are passed to it by a calling procedure. If a Function procedure has

no arguments, its Function statement must include an empty set of parentheses. A

function returns a value by assigning a value to its name in one or more statements of

the procedure.

In the following example, the Celsius function calculates degrees Celsius from degrees

Fahrenheit. When the function is called from the Main procedure, a variable containing

the argument value is passed to the function. The result of the calculation is returned to

the calling procedure and displayed in a message box.

VBCopy

Sub Main()

 temp = Application.InputBox(Prompt:= _

 "Please enter the temperature in degrees F.", Type:=1)

 MsgBox "The temperature is " & Celsius(temp) & " degrees C."

End Sub

Function Celsius(fDegrees)

 Celsius = (fDegrees - 32) * 5 / 9

End Function

Writing a property procedure

A property procedure is a series of Visual Basic statements that allow a programmer to

create and manipulate custom properties.

 Property procedures can be used to create read-only properties

for forms, standard modules, and class modules.

 Property procedures should be used instead of Public variables in code that must

be executed when the property value is set.

 Unlike Public variables, property procedures can have Help strings assigned to

them in the Object Browser.

When you create a property procedure, it becomes a property of the modulecontaining

the procedure. Visual Basic provides the following three types of property procedures.

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/function-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/end-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/sub-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#argument
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#constant
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#expression
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#form
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#standard-module
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#class-module
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#object-browser
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#module

Procedure Description

Property Let
A procedure that sets the value of a property.

Property Get
A procedure that returns the value a property.

Property Set
A procedure that sets a reference to an object.

The syntax for declaring a property procedure is as follows.

[Public | Private] [Static] Property { Get | Let | Set } propertyname [(arguments)]

[As type] statements End Property

Property procedures are usually used in pairs: Property Let with Property Get,

and Property Set with Property Get. Declaring a Property Get procedure alone is like

declaring a read-only property. Using all three property procedure types together is only

useful for Variant variables, because only a Variant can contain either an object or

other data type information. Property Set is intended for use with objects; Property

Let isn't.

The required arguments in property procedure declarations are shown in the following

table.

Procedure Declaration syntax

Property Get Property Getpropname (1, …, n) As type

Property Let Property Letpropname (1, …,,,, n, n +1)

Property Set Property Setpropname (1, …, n, n +1)

The first argument through the next to last argument (1, …, n) must share the same

names and data types in all property procedures with the same name.

A Property Get procedure declaration takes one less argument than the

related Property Let and Property Set declarations. The data type of the Property

Getprocedure must be the same as the data type of the last argument (n +1) in the

related Property Let and Property Set declarations. For example, if you declare the

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/property-let-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/property-get-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/property-set-statement

following Property Let procedure, the Property Get declaration must use arguments

with the same name and data type as the arguments in the Property Let procedure.

VBCopy

Property Let Names(intX As Integer, intY As Integer, varZ As Variant)

 ' Statement here.

End Property

Property Get Names(intX As Integer, intY As Integer) As Variant

 ' Statement here.

End Property

The data type of the final argument in a Property Set declaration must be either

an object type or a Variant.

Writing a Sub procedure

A Sub procedure is a series of Visual Basic statements enclosed by the Sub and End

Sub statements that performs actions but doesn't return a value. A Sub procedure can

take arguments, such as constants, variables, or expressions that are passed by a calling

procedure. If a Sub procedure has no arguments, the Sub statement must include an

empty set of parentheses.

The following Sub procedure has comments explaining each line.

VBCopy

' Declares a procedure named GetInfo

' This Sub procedure takes no arguments

Sub GetInfo()

' Declares a string variable named answer

Dim answer As String

' Assigns the return value of the InputBox function to answer

answer = InputBox(Prompt:="What is your name?")

 ' Conditional If...Then...Else statement

 If answer = Empty Then

 ' Calls the MsgBox function

 MsgBox Prompt:="You did not enter a name."

 Else

 ' MsgBox function concatenated with the variable answer

 MsgBox Prompt:="Your name is " & answer

 ' Ends the If...Then...Else statement

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#object-type
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/sub-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/end-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/end-statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#constant
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#expression

 End If

' Ends the Sub procedure

End Sub

Writing assignment statements

Assignment statements assign a value or expression to a variable or constant.

Assignment statements always include an equal sign (=).

The following example assigns the return value of the InputBox function to the variable.

VBCopy

Sub Question()

 Dim yourName As String

 yourName = InputBox("What is your name?")

 MsgBox "Your name is " & yourName

End Sub

The Let statement is optional and is usually omitted. For example, the preceding

assignment statement can be written.

VBCopy

Let yourName = InputBox("What is your name?").

The Set statement is used to assign an object to a variable that has been declared as an

object. The Set keyword is required. In the following example, the Set statement assigns

a range on Sheet1 to the object variable myCell.

VBCopy

Sub ApplyFormat()

Dim myCell As Range

Set myCell = Worksheets("Sheet1").Range("A1")

 With myCell.Font

 .Bold = True

 .Italic = True

 End With

End Sub

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#expression
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#constant
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/set-statement

Statements that set property values are also assignment statements. The following

example sets the Bold property of the Font object for the active cell.

VBCopy

ActiveCell.Font.Bold = True

Writing data to files

When working with large amounts of data, it is often convenient to write data to or read

data from a file. The Open statement lets you create and access files

directly. Open provides three types of file access:

 Sequential access (Input, Output, and Append modes) is used for writing text

files, such as error logs and reports.

 Random access (Random mode) is used to read and write data to a file without

closing it. Random access files keep data in records, which makes it easy to locate

information quickly.

 Binary access (Binary mode) is used to read or write to any byte position in a file,

such as storing or displaying a bitmap image.

 Note

The Open statement should not be used to open an application's own file types. For

example, don't use Open to open a Word document, a Microsoft Excel spreadsheet, or a

Microsoft Access database. Doing so will cause loss of file integrity and file corruption.

The following table shows the statements typically used when writing data to and

reading data from files.

Access type Writing data Reading data

Sequential Print #, Write # Input #

Random Put Get

Binary Put Get

Writing declaration statements

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#property
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/open-statement

You use declaration statements to name and define procedures, variables, arrays,

and constants. When you declare a procedure, variable, or constant, you also define

its scope, depending on where you place the declaration and what keywords you use to

declare it.

The following example contains three declarations.

VBCopy

Sub ApplyFormat()

 Const limit As Integer = 33

 Dim myCell As Range

 ' More statements

End Sub

The Sub statement (with matching End Sub statement) declares a procedure

named ApplyFormat. All the statements enclosed by the Sub and End Sub statements are

executed whenever the ApplyFormat procedure is called or run.

The Const statement declares the constant limit specifying the Integer data type and a

value of 33.

The Dim statement declares the myCell variable. The data type is an object, in this case,

a Microsoft Excel Range object. You can declare a variable to be any object that is

exposed in the application that you are using. Dim statements are one type of

statement used to declare variables. Other keywords used in declarations

are ReDim, Static, Public, Private, and Const.

Writing executable statements

An executable statement initiates action. It can execute a method or function, and it can

loop or branch through blocks of code. Executable statements often contain

mathematical or conditional operators.

The following example uses a For Each...Next statement to iterate through each cell in

a range named MyRange on Sheet1 of an active Microsoft Excel workbook. The

variable c is a cell in the collection of cells contained in MyRange.

VBCopy

Sub ApplyFormat()

Const limit As Integer = 33

For Each c In Worksheets("Sheet1").Range("MyRange").Cells

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#procedure
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#array
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#constant
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#scope
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#keyword
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#method

 If c.Value > limit Then

 With c.Font

 .Bold = True

 .Italic = True

 End With

 End If

Next c

MsgBox "All done!"

End Sub

The If...Then...Else statement in the example checks the value of the cell. If the value is

greater than 33, the With statement sets the Bold and Italic properties of

the Fontobject for that cell. If...Then...Else statements end with End If.

The With statement can save typing because the statements it contains are

automatically executed on the object following the With keyword.

The Next statement calls the next cell in the collection of cells contained in MyRange.

The MsgBox function (which displays a built-in Visual Basic dialog box) displays a

message indicating that the Sub procedure has finished running.

Writing Visual Basic statements

A statement in Visual Basic is a complete instruction. It can contain keywords,

operators, variables, constants, and expressions. Each statement belongs to one of the

following three categories:

 Declaration statements, which name a variable, constant, or procedure and can

also specify a data type.

 Assignment statements, which assign a value or expression to a variable or

constant.

 Executable statements, which initiate actions. These statements can execute a

method or function, and they can loop or branch through blocks of code.

Executable statements often contain mathematical or conditional operators.

Continue a statement over multiple lines

A statement usually fits on one line, but you can continue a statement onto the next line

by using a line-continuation character. In the following example, the MsgBoxexecutable

statement is continued over three lines:

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#statement
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#keyword
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#variable
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#constant
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#expression
https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/writing-declaration-statements
https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/writing-assignment-statements
https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/writing-executable-statements
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#line-continuation-character

VBCopy

Sub DemoBox() 'This procedure declares a string variable,

 ' assigns it the value Claudia, and then displays

 ' a concatenated message.

 Dim myVar As String

 myVar = "John"

 MsgBox Prompt:="Hello " & myVar, _

 Title:="Greeting Box", _

 Buttons:=vbExclamation

End Sub

Add comments

Comments can explain a procedure or a particular instruction to anyone reading your

code. Visual Basic ignores comments when it runs your procedures. Comment lines

begin with an apostrophe (') or with Rem followed by a space, and can be added

anywhere in a procedure. To add a comment to the same line as a statement, insert an

apostrophe after the statement, followed by the comment. By default, comments are

displayed as green text.

Check syntax errors

If you press ENTER after typing a line of code and the line is displayed in red (an error

message may display as well), you must find out what's wrong with your statement, and

then correct it.

