SETON HALL UNIVERSITY

TWENTYFIRST ANNUAL

JOSEPH W. ANDRUSHKIW

MATHEMATICS COMPETITION

1. A car rental company charges $\$ 36$ a day and $22 \not \subset$ a mile for renting a car. June rented a car for 5 days and was charged $\$ 292.20$. How many miles did she drive?
(Answer: 510 miles)
2. The degree measure of each angle in a regular octagon is how much larger than the degree measure of each angle in a regular hexagon?
(Answer: 15°)
3. Evaluate $a^{b c}+b^{a c}+c^{a b}$ if $a=4, b=-1, c=1 / 2$.
(Answer: 17 1/2)
4. Jim drives a certain distance at an average rate of r miles per hour (where r is a positive real number). He then drives twice the original distance at an average rate of $2 / 3 r$ miles per hour. Find the average rate (in miles per hour) in terms of r for the total distance he drove.
(Answer: 3/4)
5. Mixture A contains 45% alcohol and mixture B contains 75% alcohol. How many quarts of mixture A and mixture B must be combined to obtain 60 quarts of a mixture which contains 64% alcohol?
(Answer: 22 qts. of A; 38 qts. of B)
6. Simplify (where $\left.t^{2}-2 c t<0\right): \frac{(t-c)(c-t)}{\sqrt{2 c t-t^{2}}}+\frac{c}{\sqrt{1-(t-c)^{2} / c^{2}}}+\sqrt{2 c t-t^{2}}$. (Answer: $2 \operatorname{sqrt}\left(2 c t-\mathrm{t}^{\wedge} 2\right)$)
7. Let n be a positive integer and define $F(n)$ to be the sum of the $2 n$ smallest positive integral multiples of n. For example, $F(3)=1 \cdot 3+2 \cdot 3+3 \cdot 3+4 \cdot 3+5 \cdot 3+6 \cdot 3=21 \cdot 3=63$. Find the largest prime number p for which $F(p)<15000$.
(Answer: 19)
8. The real values of x for which $\frac{8 x^{3}+48 x^{2}+117 x+108}{x^{3}+9 x^{2}+27 x+27} \leq 4$ lie on an interval. Find the length of this interval.
(Answer: 3)
9. One code (a "letter code") consists of 3 letters; the letters can be chosen from A to Z, but the third cannot be an O or an I; a letter can appear at most twice and repeated letters must be in adjacent positions. A second code (a "digit code") consists of 4 digits; the digits can be chosen from 0 to 9 , but the first cannot be a 0 or a 1 ; a digit can appear at most twice and repeated digits must be in adjacent positions; and two pairs of double digits are allowed. By how much does the possible number of "letter" codes exceed the possible number of "digit" codes?
(Answer: 9783)
10. An ellipse lies on a coordinate plane and passes through the origin and the points $(0,16)$ and $(-4,0)$. If the major axis of the ellipse is parallel to the y-axis and is 34 feet long, find the length of the minor axis of the ellipse.
(Answer: 68/15)
11. The real value of x for which $2^{4 x+3} \cdot 3^{-3 x+2}=4^{2 x+2} \cdot 5^{-x+1}$ can be written in the form $x=\frac{\log R}{\log T}$, where R and T are rational numbers. Find R and T (in simplest rational form).
(Answer: $\mathrm{R}=10 / 9 ; \mathrm{T}=5 / 27$)
12. The Lodi Loops are to play the Bogata Bouncers in a best of 5 series. The first two games are to be played in Lodi, the next two in Bogata (if a fourth is needed), and the fifth in Lodi (if needed). The probability that Lodi will win at home is $2 / 3$ (and that Bogata will win at Lodi is $1 / 3$); the probability that Lodi will win at Bogata is $1 / 2$ if they have won at least one previous game and is $3 / 8$ if they have won no previous games. Find the probability that Bogata wins the series in fewer than 5 games. (Answer: 29/144)
13. A toy store manager purchased a total of 43 items including blocks (at $\$ 8.50$ each), dolls (at $\$ 12.20$ each), trucks (at $\$ 10.40$ each), and puzzles (at $\$ 6.40$ each), for a total of $\$ 410.00$. The amount spent for the trucks and puzzles exceeded the amount spent for the blocks and dolls by $\$ 30$. The number of blocks and trucks purchased was three more than the number of dolls and puzzles purchased. How much was spent on the trucks?
(Answer: \$156)
14. Find the sum of the squares of the three values of x for which $\left(x^{3}-x-5\right)^{3}-3\left(x^{3}-x-5\right)^{2}+3\left(x^{3}-x-5\right)-1=0$.
(Answer: 2)
15. Triangle $A B C$ has sides $A B, A C, B C$ of lengths 24 feet, 40 feet, 56 feet respectively. Line segment $A D$ is drawn from A to point D on side $B C$, and $A D$ bisects angle $B A C$. Find the length of line segment $A D$.
(Answer: 15 ft.)
16. Let A and N be positive real integers. Bob earns $2 A$ dollars the first week, $A / 4$ more than that the second week, and so forth, each successive week earning $A / 4$ more than the previous week. Ron earns A dollars the first week, $A / 2$ more than that the second week, and so forth, each successive week earning $A / 2$ more than the previous week. After both have worked for N weeks, Ron has earned $\$ 252$ more than Bob. The sum of

Bob's earnings in the third week and Ron's earnings in the second from last week was $\$ 100$. How much did Bob earn in N weeks?

